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Abstract-A two-dimensional Galerkin formulation of the three-dimensional Oberbeck-Boussinesq equa- 
tions is used to determine the onset of convection in an infinite rigid horizontal channel uniformly heated 
from below. Earlier results (Chana and Daniels, J. F&d Me& 199,257-279 (1989)) are extended to higher 

levels of truncation and to include modes of convection not previously examined. 

1. INTRODUCTION 

THERMAL convection is an important mechanism of 
heat and mass transfer in many different areas and 

there are an increasing number of t~hnological appli- 
cations where the flow is partly or completely 
confined. Theoretical work on the onset of convection 
in boxes heated from below includes that by Davis [l] 
and Catton [2] and experimental work has been 
carried out by Buhler et al. [3] and Luijkx et al. 141. 
An idealized model of convective instability in an 
infinite rectangular channel uniformly heated from 
below was considered by Davies-Jones [5] who used 
the assumption of stress-free horizontal boundaries 
to simplify the mathematical analysis. More recently, 
solutions have been found for rigid boundaries 16) 
using a two-dimensional Galerkin fo~ulation of the 
Oberbeck-Boussinesq equations, which, for steady 
linearized motion with respect to Cartesian coor- 
dinates X, y, z can be written as 

&+_+_,o, av aw 
ax ay a2 

v2u-:p v2v=2 
-ax’ aJ 

* 
v2w+ ite = - z, v2e+w = 0 (1) 

where (u, L’, w), 8 and p are respectively the non-dimen- 
sional velocity components, temperature and pressure 
measured relative to the basic state of constant strati- 
fication and no motion. The non-dimensiona co- 
ordinates are located with the x-axis along the centre 
of the horizontal channel and the z-axis vertically 
upwards. The Rayleigh number is defined as 

R = slgAB*d’/w (2) 

where z is the coefficient of thermal expansion, g the 
acceleration due to gravity, A@* the temperature 
difference maintained between the lower and upper 
surfaces of the channel, d the height of the channel 
and K and v the thermal diffusivity and kinematic 
viscosity, respectively. The second parameter involved 

in the determination of the occurrence of weakly non- 
linear stationary states is the semi-aspect ratio a of the 
cross-section of the channel, Iyl Q a, lzl < 4. The 
walls of the channel are assumed to be rigid and per- 
fectly conducting so that 

u=v=w=_OrO (3) 

ony= +aandi= _+$. 
Solutions of equations (1) and (3) are sought in the 

form 

(8, u, v, w,p) = eiB”(O, iv, V, W, P) ty, z) (4) 

where q is a wave number for variations along the 
channel. Substitution into equation (1) and elim- 
ination of fJ and P yields the reduced system 

( ~~~-q2)((~-q2)v+~)=* (5) 

( ;+grq2)((jgq2) w+-g) 
-Rq20 = 0 (6) 

( ‘+E-,2 Q+W=O 
ay2 at2 ) (7) 

for V, Wand 0, to be solved subject to 

v av X---E: W=Q=O my= _+a 

V= Z=~=Q=* onz=ff. i (8) 
The total flux down the channel is zero for non-zero 
wave numbers q, with 

I av aw u=q Y&+-g . ( > 
55 
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NOMENCXATURE 

a semi-aspect ratio of channel 
ak, b,, c, Gaierkin coefficients 
d height of channel 

9 acceleration due to gravity 
N Galerkin truncation level 

P non-dimensional pressure 
P pressure function 

9 wave number 
R Rayleigh number 
u, v, w non-dimensional velocity 

components 

U, Y, W velocity functions 
.Y, y, .r non-dimensiona coordinates. 

Greek symbols 
II coefficient of thermal expansion 
e non-dimensional temperature 
A@* vertica1 temperature difference 
0 temperature function 
K thermal diffusivity 
V kinematic viscosity. 

2. GALERKIN FORMU~TION addition, higher modes of convection are determined, 

The system of equations and boundary conditions 
(5)-(g) can be solved by a Galerkin method in which 

0 = k$, ak@dy, -9, W = 5 bk Wk(y, d, 
k-l 

(10) 
k-l 

for a specified truncation level N. Solutions can be 
classified according toy, z symmetries shown in Table 
I ; in ref. [6] only the leading even-even (EE) mode 
was considered, corresponding to trial functions 

oi, =eosf2m-l)~cos(2n-l)xr 

w, = C,(z) cos (2m- I)5 

Here C, and S,,, are the beam functions discussed by 
Harris and Reid (71. Values of m and n are assigned 
to values of k according to the pattern shown in Table 
2; the maximum truncation level considered in ref. [6] 
was N = 10. Here results are extended to much higher 
truncation levels (iv = 2~9, incorporating all indi- 
vidual y and z modes up to m = 5 and n = 5. in 

Table 1, y, z symmetries of eigenmodes : E, even ; 0, odd 

Mode EE OE EO 00 

including the second EE mode and the first two odd- 
even (OE) modes, the main purpose being to establish 
that the EE mode determined in ref. [6] is the first 
to appear as the Rayleigh number is increased. The 
remaining even-odd (EO) and odd-odd (00) modes, 
which are expected to be of most significance in rela- 
tively thin channels, are not examined. Results for the 
leading mode in the case of insuiating sidewalls are 
described by Luijkx and Platten [S]. 

For the OE mode the trial functions are taken to 
be 

@k = sin mT cos (22 - 1)n.r 

W, = C,(z) sin m$ 

V, =I C, f sin2nzz 
0 

consistent with boundary conditions (8). The series 
(10) are substituted into equations (9-47) which are 
then multiplied by Vk, WE and 0~ $2 1,. . . ,N), 
respectively, and integrated over the cross-section of 
the channet to obtain a set of 3X linear algebraic 
equations For the coefficients a,, bk and ck, making use 
of orthogonality properties where appropriate (see 
ref. [6]). The double integrals are converted into multi- 
plicative combinations of single integrals which are 
then evaluated using Simpson’s rule, typically with 200 
intervals, ensuring no measurable loss of accuracy 
from this source in comparison with that from trunc- 
ation effects. The zeros of the determinant of the 
coefficient matrix are found by using Newton’s 
method to adjust the value of R at a given value of q. 

Table 2. Ordering of triai functions 

k 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

m I : 2 2 I 3 3 3 12 3 4 
n 1 I 2 3 

32 
I 2 3 4 4 4 1 
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Table 3. Convergence of the Galerkin scheme for a = l/2 

57 

N 4E R, aI b, a2 b2 c2 

1 3.4966 3115.61 0.6441 14.79 - - - 

4 3.4031 2971.02 0.3520 7.873 0.0137 0.2130 -0.2307 
9 3.3881 2951.98 0.3447 7.680 0.0131 0.2218 -0.2617 

16 3.3833 2946.48 0.3436 7.647 0.0130 0.2257 -0.2675 
25 3.3812 2944.28 0.3435 1.640 0.0129 0.2276 -0.2691 

Table 4. Values of R on the neutral curves for a = 2 

9 
Mode N 1.2 2.4 3.6 4.8 6.0 

10 1893.28 1786.57 1794.13 2348.76 3487.55 
EEl 16 1869.11 1785.16 1793.28 2348.04 3486.97 

25 1859.61 1783.99 1792.78 2347.51 3486.27 

10 2659.39 1920.56 2115.47 2197.11 4066.66 
EE2 16 2435.16 1907.17 2103.75 2788.91 4059.44 

25 2404.30 1902.29 2098.91 2785.30 4056.16 

10 1894.67 1773.19 1901.35 2510.27 3699.13 
OEl 16 1877.01 1769.86 1898.11 2507.25 3696.36 

25 1868.43 1768.35 1896.59 2505.70 3694.63 

10 2736.32 2168.03 2448.04 3229.31 4613.61 
OE2 16 2343.81 2138.11 2429.10 3213.13 4598.37 

25 2311.75 2126.52 2421.94 3206.86 4592.26 

Also, critical values of R and q are located by iterative 
adjustment of a quadratic interpolation to the neutral 
curve near its minimum point. Gaussian elimination 
completes the determination of the coefficients a,, bk 

. . 
and clr, and a normahzatton c, = 1 is adopted. 

Checks on the influence of the truncation level N 
were carried out, both in terms of its effect on the 
position of the neutral curve and in terms of the accu- 
racy of the representation of the original partial 
differential equations. Results for the square channel 
(Table 3) show good overall convergence for the lead- 
ing mode and a comprehensive set of results for a 
wider channel (a = 2, Table 4) indicates diminishing 
but still adequate convergence both at extreme aspect 
ratios and for higher modes of convection. Figure 1 

so0 h 

FIG. 1. The behaviour of L/q:, where L is the left-hand side 
of equation (5), as a function of Q, the number of terms 
retained in the Galerkin series (lo), for a = f, N = 16 and 

y=.z = ! at the critical point. 

gives an indication of accuracy in terms of pointwise 
satisfaction of the original equations. Here individual 
terms in equation (5) have been evaluated at J = .z = 
t for a square channel with N = 16, summed, and 
plotted as a function of the number of terms retained 
in the Galerkin series (10). The main variation, which 
arises from the fourth-order derivative terms, appears 
to settle down in a satisfactory manner, given the 
pointwise nature of the comparison. A corresponding 
analysis of equation (7) indicates relatively little vari- 
ation and rapid convergence, owing 
order of the derivatives involved. 

to the reduced 

3. RESULTS 

Figures 2-5 show neutral curves obtained with 
N = 25 for aspect ratios a = :, 4, 1 and 2. Except for 
the lowest aspect ratio, the four leading modes EE1/2, 
OE1/2 are shown in each case. The qualitative behav- 
iour is similar to that found in ref. [5] for the idealized 
problem with stress-free horizontal boundaries. The 
critical Rayleigh number R, is always that associated 
with the lowest even mode (EEl) and the cor- 
responding critical wave number increases indefinitely 
as the aspect ratio decreases. The precise behaviour as 
a + 0 determined in ref. [6] is 

(a + 0). 

(13) 

At long wavelengths the lowest odd mode (OEl) 
can be more dangerous than the corresponding even 
mode and for low values of a has its minimum at 
q = 0, again consistent with asymptotic predictions 
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FIG. 2. Neutral curves for the leading even (EE) and odd 
(OE) modes with a = J and N = 25. 

for a + 0 reported in ref. [6]. At higher aspect ratios 
the minimum shifts to non-zero values of q, attaining 
the value q = 3.117 associated with an infinite plane 
layerasa-rco. 

Table 5 shows the critical Rayleigh number R, and 
wave number qc for each of the four aspect ratios 
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FIG. 4. Neutral curves for the first two even (EE) and odd 
(OE) modes with LI = 1 and IV = 25. 

EEI EE2 
u % RC 4C 4 

I I ! 1 

0 2 4 6 

FIG. 5. Neutral curves for the first two even (EE) and odd 
(OE) modes with o = 2 and S = 25. 

Table 5. Critical wave numbers and Rayleigh numbers for 
the leading EE modes with S = 25 

! 4.1884 8955.15 - 
i 3.38 2.9484 12 2944.28 1870.08 2.5027 2.5315 14 3424.23 976.7 

2 2.9983 1719.00 2.5642 1891.85 

2 x 10Jo~L--I 
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FIG. 3. Neutral curves for the first two even (EE) and odd 
(OE) modes with a = 4 and N = 25. 

considered, improving upon the accuracy of the orig- 
inal results for N = 10 given in ref. [6]; the minimum 
point of the neutral curve associated with mode EE2 
is also shown. 
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Table 6. Comparison of asymptotic formulae (14) with 
numerical results for a = 2 

Asymptotic Galerkin 

Mode qc & q5 & 

EEl 2.9861 1716.48 2.9983 1719.00 
OEl 2.5724 1747.29 2.657 1 1760.27 
EE2 2.2835 1861.36 2.5642 1891.85 
OE2 1.3027 2063.56 2.3240 2125.30 

The numerical results can also be compared with 
asymptotic solutions for large aspect ratios. As a -+ co, 
minima of the neutral curves associated with the 
leading vertical mode are given by 

R - R,+a-‘R2/9c, q’ _ qi-a-‘4 (14) 

where RO = 1707.76 and q,, = 3.117 are the critical 
Rayleigh number and wave number for the infinite 
layer with rigid horizontal boundaries. Here I? and d 
are eigenvalues of the reduced system 

( ) g+q 2A-!R2A -0; 

/l=gy=o (Y=&l) (15) 

and c 4 0.154 (see ref. [6]). If 4 c :a even modes (EE) 
are associated with solutions of 

w, tan o, +w_ tanh w_ = 0 (16) 

and odd modes (OE) with solutions of 

0, cot W, --o_ coth w_ = 0 (17) 

where w * = (jR&&“2. Ifq > fR these equations are 
replaced by 

0, tano+-wtano=O (18) 

O+COtW+--OCOtO=O (19) 

respectively, where o = (Q-fR)“2. Equations (16)- 
(19) define the locations of the neutral curves near 
(qO, R,) as a + co, with higher modes corresponding 
to increasing numbers of zeros in the even (EE) or 
odd (OE) eigenfunction A(Y). The close grouping of 

the curves is reflected in the results of Fig. 5 for a = 2. 
Minimum values of R for the even modes are found 
to occur where :fi > 4 and equation (16) applies, 
while minimum values for the odd modes are found 
to occur where ja < 4 and equation (19) applies. 
Numerical solutions of equation (16) or (18) can be 
initiated from the point where 4 = f& = fM21r2, each 
integer value of M(= 1,2,. . .) corresponding to a 
different solution branch. Minima of the leading even 
branches are found at 

(Q, I?) = (3.1959,13.905), (18.005,58.363), . . . (20) 

while minima of the leading odd branches are found 
at 

(4, R) = (12.394,29.609),(32.075,88.826),. . . (21) 

Overall minima for R given by expression (14) when 
a = 2 are consistent with the results of the Galerkin 
method for this aspect ratio (see Table 6). However, 
for the higher branches the departure from the asymp- 
totic form is rapid, particularly in terms of the wave- 
length of the motion. 
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STABILITE LINEAIRE DE LA CONVECTION DANS UN CANAL RIGIDE CHAUFFE 
UNIFORMEMENT PAR LE BAS 

R&.um&Une formulation bidimensionnelle de Galerkin des kquations tridimensionnelles d’oberbeck- 
Boussinesq est utiIisQ pour dtterminer l’apparition de la convection dans un canal infini, horizontal, rigide 
et uniformCment chauffk par le bas. Des risultats antCrieurs (Chana et Daniels, J. Fluid Mech. 199, 257- 
259 (1989)) sont itendus i des niveaux plus tlevCs de troncature et on inclut da modes de convection non 

exami& jusqu’ici. 
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LINEARE STABILITAT DER KONVEKTION IN EINEM VON UNTEN GLEICHMiiSSIG 
BEHEIZTEN KANAL 

Zusammeafassung-Da Ziel ist, den Beginn der Konvektion in einem unbegrenzten, stabilen, waage- 
rechten, von unten gleichm?iBig beheizten Kanal au bestimmen. Dazu wird ein zweidimensionaler Galerkin- 
Ansatz der dreidimensionalen Oberbeck-Boussinesq-Gleichungen benutzt. Gegeniiber friiheren Ergeb- 
nissen (Chana and Daniels, J. Ffuid Mech. 199.257-279 (1989)) werden die Abbruchbedingung erweitert 

und bisher nicht untersuchte Arten der Konvektion eingebunden. 

JIZlHEftHAII YCTO@IMBOCTb KOHBEKDMH B XECTKOM KAHAJIE, OAHOPOAHO 
HAI-PEBAEMOM CHM3Y 

AsmnWu-&u otrpenenesma no3HlsKHoaemra 10HBeKmrn a steorpalWtemt0M XeclxOM rOpH30HTWlb- 
Hot4 mmnc, omiop0AHo HarpemehfoM cwmy,mnom3yi0m2n TpexwpHsre ypasneHm O&p6cm- 

16ycuwecxa n n~y~epnoil t#mprqmspOrre l%mpsuHa. PaHee nonywrme puynbTa= (Chana and 
Daniels, J. Ffufd Me& 199,257~279 (1989)) pacnpocrpamnorca Ha donee BbIcolise yponrm saMb[rasrmt 

HLUUl~ HeHCCJleJlOWHblXMO~LOHBCKISUi. 


